В электрических цепях, содержащих комбинированные сопротивления (нагрузку), в частности, активную (лампы накаливания, электронагреватель и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) составляющие, общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой: < /p>
Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени (см. рис.), когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.
Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.
COS φ = P/S. P-активная мощность; S-полная мощность; Q-реактивная мощность. ![]() |
Активная энергия преобразуется в полезную – механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, так как приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей (снижение пропускной способности), а так же повышению активных потерь и падению напряжения (из-за увеличения реактивной составляющей тока питающей сети). Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют установки компенсации реактивной мощности, основными элементами которых являются конденсаторы.
Установки формируют опережающую реактивную мощность (ток по фазе опережает напряжение) для компенсации отстающей реактивной мощности, генерируемой индуктивной нагрузкой.
Реактивная мощность Q пропорциональна реактивному току, протекающему через индуктивный элемент: Q = U x IL,
где IL – реактивный (индуктивный) ток, U – напряжение сети.
Таким образом, полный ток, питающий нагрузку, складывается из активной и индуктивной составляющих:
I = IR + IL.
Для снижения доли реактивного тока в системе «генератор-нагрузка» параллельно нагрузке подключают компенсаторы реактивной мощности (установки КРМ). Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами – индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор-нагрузка») позволяет, в частности, передать в нагрузку бОльшую активную мощность при той же номинальной полной мощности генератора.